What it will take to unleash the potential of geothermal power

“Geothermal is really ready for prime time,” says Tim Latimer, founder and CEO of the EGS startup Fervo.

Geothermal’s appeal is all about consistency: while the electricity output of wind and solar plants varies with the weather and time of day, geothermal power is always on, providing a stable source of electricity.

“It’s really the only baseload renewable,” says Jody Robins, a geothermal engineer at the National Renewable Energy Laboratory. Nuclear power (which is carbon-free but not renewable) can serve a similar role, although cost, issues with waste, and public perception have limited its deployment.

Modern geothermal power plants have been running in the US since the 1970s. These plants generally pump hot water or steam from underground up to the surface to move a turbine and generate electricity. Then the water is pumped back down to maintain pressure underground, so the process can keep going.

Prime geothermal sites share certain characteristics: heat, rock with fractures in it, and water, all close to each other and within a couple of miles of the surface. But by now the most accessible geothermal resources—in the US, they’re largely concentrated in the west—have been tapped. Though researchers think there are many more potential sites yet to be found, it’s hard to figure out where they are. And in most of the eastern US and many other places around the world, the rock underground isn’t the right type for traditional plants to work, or the water isn’t there.

Some researchers and startups are trying to expand geothermal into new places. With EGS, they’re attempting to engineer what’s underground by pumping fluid down into impermeable rock to force cracks open. This creates space where water is free to move around and heat up, producing the steam needed for power. The process has the potential to trigger earthquakes, as early projects in South Korea and Switzerland have shown. However, EGS is similar to fracking, which is widespread across the US, and the risks are likely manageable in most places, Robins says.

This approach could expand geothermal to places that don’t have the groundwater or rock types needed for traditional plants.

Still, reaching these resources won’t be easy. Commercial drilling doesn’t usually go much deeper than seven kilometers (four miles)—for cost reasons, it’s often even less than that—and many places that might benefit from geothermal aren’t hot enough at that depth to reach the 150 °C needed to generate electricity economically. Reaching sufficient temperatures may mean going deeper, which would require new techniques and technologies that can withstand high heat and pressure.

Courtesy DOE Geothermal Technologies Office

Fervo is working out some of those details in its own projects, including one announced earlier this year with Google to install geothermal capacity near the company’s data centers in Nevada. It’s also recently gotten involved in a DOE project in central Utah, called FORGE (Frontier Observatory for Research in Geothermal Energy).

Academic and industry researchers at FORGE are trying to find the best practices for deploying EGS, including drilling and reservoir maintenance. The site was chosen because its geology is fairly representative of places where other EGS plants might be built in the US, says Lauren Boyd, EGS Program Manager in the DOE’s Geothermal Technologies Office.

With the new funding from the infrastructure bill, the DOE will fund four additional demonstration sites. That will widen what researchers understand about setting up EGS facilities, since they’ll be able to work in different places and with different kinds of rocks. At least one plant will be built in the eastern US, where geothermal is less common.

But technological barriers aren’t all that has slowed the progress of geothermal power, says Susan Hamm, director of the DOE’s Geothermal Technologies Office. Building a geothermal plant can take up to a decade because of all the permits involved. Streamlining that paperwork could nearly cut that time in half and double the projected geothermal capacity by 2050.

How to become successful

For more technology Updates

Latest Jobs in Pakistan

Best Scholarships for Needy students

Source link

Leave a Reply

Your email address will not be published. Required fields are marked *